A Sequential Convex Programming Approach to Solving Quadratic Programs and Optimal Control Problems With Linear Complementarity Constraints
نویسندگان
چکیده
Mathematical programs with complementarity constraints are notoriously difficult to solve due their nonconvexity and lack of constraint qualifications in every feasible point. This letter focuses on the subclass quadratic linear constraints. A novel approach solving a penalty reformulation using sequential convex programming homotopy parameter is introduced. Linearizing necessarily nonconvex function yields subproblems, which have constant Hessian matrix throughout all iterates. allows solution computation single KKT factorization. Furthermore, globalization scheme introduced underlying merit minimized analytically, guarantee descent provided at each iterate. The algorithmic features possible computational speedups illustrated numerical experiment.
منابع مشابه
On convex quadratic programs with linear complementarity constraints
The paper shows that the global resolution of a general convex quadratic program with complementarity constraints (QPCC), possibly infeasible or unbounded, can be accomplished in finite time. The method constructs a minmax mixed integer formulation by introducing finitely many binary variables, one for each complementarity constraint. Based on the primal-dual relationship of a pair of convex qu...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملA Class of Quadratic Programs with Linear Complementarity Constraints
We consider a class of quadratic programs with linear complementarity constraints (QPLCC) which belong to mathematical programs with equilibrium constraints (MPEC). We investigate various stationary conditions and present new and strong necessary and sufficient conditions for global and local optimality. Furthermore, we propose a Newton-like method to find an M-stationary point in finite steps ...
متن کاملA Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2022
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2021.3083467